lunes, 22 de noviembre de 2010

EL MARAVILLOSO MUNDO DE LA ASTRONOMIA !!



Según la Real Academia Española, Astronomía es: "La ciencia que trata de cuanto se refiere a los astros, y principalmente a las leyes de sus movimientos."


Por su parte Wikipedia la define como : "La astronomía (del griego: αστρονομία = άστρον + νόμος, etimológicamente la "ley de las estrellas") es la ciencia que se ocupa del estudio de los cuerpos celestes, sus movimientos y los fenómenos ligados a ellos. Su registro y la investigación de su origen viene a partir de la información que llega de ellos a través de la radiación electromagnética o de cualquier otro medio. La astronomía ha estado ligada al ser humano desde la antigüedad y todas las civilizaciones han tenido contacto con esta ciencia. Personajes como Aristóteles, Tales de Mileto, Anaxágoras, Aristarco de Samos, Hiparco de Nicea, Claudio Ptolomeo, Hipatia de Alejandría, Nicolás Copérnico, Santo Tomás de Aquino, Tycho Brahe, Johannes Kepler, Galileo Galilei, Isaac Newton, Immanuel Kant, Gustav Kirchhoff y Albert Einstein han sido algunos de sus cultivadores.Es una de las pocas ciencias en las que los aficionados aún pueden desempeñar un papel activo, especialmente en el descubrimiento y seguimiento de fenómenos como curvas de luz de estrellas variables, descubrimiento de asteroides y cometas, etc.

La astronomía se define como la ciencia que se ocupa del estudio de los cuerpos celestes, sus movimientos, los fenómenos ligados a ellos, su registro y la investigación de su origen a partir de la información que llega de ellos a través de la radiación electromagnética o de cualquier otro medio.
La cosmología por su parte se define como el estudio a gran escala de la estructura y la historia del Universo en su totalidad. Es decir estudia cómo es el universo, por qué es así, y busca las respuestas a su origen.
La unión de ambas permiten conocer casi todas las respuestas sobre el universo y el firmamento.
Y es que no sólo lo que está “cerca” nos afecta, también las galaxias más lejanas tienen mucho que aportar a nuestra vida, y mucho más a nuestra curiosidad.
A titulo personal definiría la Astronomía como la puerta que me permite adentrarme en el mundo que se encuentra a gran escala más allá de mis ojos. Un mundo..o mejor dicho un Macromundo donde tienen cabida muchas respuestas a interrogantes planteadas en relación al universo ,un mundo ilimitado para mi donde cada cm a su interior representa un cúmulo extraordinario de conocimiento.
Desde el principio de los tiempos el Ser Humano se ha maravillado al observar el cielo estrellado. Un prodigio de sugerentes luces brillantes que pueblan el firmamento al caer la noche.
Puede decirse que la Astronomía nació en el mismo momento en que en el Hombre se despertó la curiosidad y la capacidad de preguntarse por el mundo que le rodeaba. Todas las civilizaciones se han interesado y estudiado los astros. Desde la prehistoria, a mesopotamia, pasando por el antiguo Egipto y las grandes aportaciones de los astrónomos griegos, desde Demócrito hasta Ptolomeo. Los grandes astrónomos árabes de la Edad Media.Y después, el inicio de la Astronomía moderna a partir del Renacimiento con Copernico, Kepler, Galileo y tantos otros que lograron sacudirse la rémora de la astrología y dejar la vía expedita para asentar a la Astronomía como una Ciencia por derecho propio.
Hace justo  400 años, Galilei Galileo apuntó uno de sus primeros telescopios a los cielos.A través de su pequeña ventana, Galileo descubrió que la Luna tiene cráteres , Venus tiene fases , Júpiter tiene lunas , y Saturno tiene anillos .Realizó las primeras observaciones astronómicas con un rudimentario telescopio que había construido él mismo. También por esa época se publicó la Astronomia Nova de Johannes Kepler, obra que reformuló conceptos básicos de la astronomía en donde exponía dos de sus tres leyes del movimiento de los planetas alrededor del Sol.
Kepler trabajó durante muchos años tratando de encontrar un modelo que permitiese explicar los movimientos planetarios utilizando para tal efecto los pensamientos neoplatónicos y el sistema heliocéntrico de Copérnico.

Después de probar, sin éxito, con infinidad de formas geométricas "perfectas", lo intentó con variaciones del circulo: las elipses, con las cuales concordaban exactamente los datos obtenidos durante las observaciones. Esto contradecía uno de los paradigmas pitagóricos que seguían siendo considerados como ciertos después de 2000 años.
Las leyes de Kepler se pueden resumir así:
1.- Los planetas giran alrededor del Sol en orbitas elípticas estando este en uno de sus focos.
2.- Una línea dibujada entre unl planeta y el sol barre áreas iguales en tiempos iguales.
3.- El cubo de la distancia media de cada planeta al Sol es proporcional al cuadrado del tiempo que tarda en completar una órbita.
En la joya del Adriático Galileo Galilei diseñó, construyó y usó por primera vez un telescopio con fines astronómicos, sorprendiendo a las élites educadas un año más tarde con la publicación de sus observaciones en "Sidereus nuncius". Si hasta ese momento había dudas sobre la teoría copernicana, a partir de entonces la Tierra dejó de ser el centro del Universo conocido. Un cambio esencial en la concepción del Cosmos y del papel del hombre en él, que en buena medida contribuyó, para bien y para mal, a la configuración del mundo que tenemos en nuestras manos.
El Universo constituye la mayor aula y el mayor Laboratorio para los científicos y Astrónomos evidentemente en mayor escala que el sol que también es por referencia punto de estudio de los hombres de ciencia. Ofrece una variedad infinita de estados de altísimas o bajísimas energías, que serían muy difíciles o imposibles de replicar en la Tierra. Mirando a lo que hay “ahí fuera”, podemos comprender cosas que de otra manera no tendríamos manera de estudiar. Las estrellas de neutrones son astros que demuestran teorías cuánticas y relativistas en directo, y aún se están buscando las estrellas de quarks, que son todavía más especiales. Los agujeros negros, o las explosiones de rayos gamma (que dan más energía que toda la del Sol en un año, pero en un sólo segundo) nos hacen testigos de cataclismos inimaginables. Y la física es la que los estudia.
Si la tierra aun constituye un territorio de exploración y cuna de nuevos descubrimientos, queda a la imaginación del lector todo lo que se esconde tras ese maravilloso Universo. Los grandes inventos necesitan de  necesitan hallasgos verdaderamentesignificativos que vienen tras la observación y medición de ciertos fenómenos. Más del 95% del Universo, del lugar al que pertenecemos, está hecho de una materia que no conocemos: la materia oscura. Y la energía oscura, una especie de gravedad repulsiva de la que no se conoce casi nada, rige gran parte del Universo que observamos. O quizás no existan y lo que no cuadren sean nuestras teorías, aún incompletas. ¿Cómo era el Universo antes? ¿Tuvo el tiempo un principio? ¿Cómo será el futuro del Universo: se congelará, se aplastará sobre sí mismo, o nada de lo anterior? ¡Hay que explorar! La Astrofísica no deja de adentrarse en lo desconocido.  Con la llegada del siglo XX y la creación de los grandes observatorios, la Astronomía dio un gran salto cualitativo. Se ampliaron las ventanas de observación: los astrónomos ya no se limitaban a observar el cielo en luz visible, ahora también era posible observar el firmamento en ondas de radio, en infrarrojo, en ultravioleta…. en prácticamente todo el espectro electromagnético. Y para ello se han creado los telescopios adecuados y los observatorios que los acogen. Inmensos radiotelescopios fueron desplegados en la segunda mitad del siglo XX: espectaculares orejas con las que escuchar al Universo en ondas de radio.
Y en el último cuarto del siglo pasado, la Astronomía sale de la Tierra con los observatorios en órbita. Telescopios especializados en diferentes regiones del espectro electromagnético que se enviaron fuera de la atmósfera terrestre para evitar el molesto efecto de esta sobre la radiación procedente de los astros. Qué decir de las espectaculares imágenes que nos ha proporcionado el telescopio Hubble, todavía en órbita alrededor de la Tierra.
La práctica de la astronomía se remonta a los inicios de la civilización. Nuestros antepasados al contemplar la inmensidad, belleza y misterios del cosmos, se motivaron a emprender la aventura de su conocimiento.
La necesidad de dar respuestas a preguntas tales como:

QUIENES SOMOS ,CUAL ES NUESTRO ORIGEN ,HACIA DONDE VAMOS.

 

Constituyeron la motivación o el empuje a tratar de averiguar sobre la Tierra y los Cielos; impulso que lejos de haberse agotado está más vigente que nunca.
La Astronomía como ciencia, estudia el universo incluyendo a la Tierra como planeta. Establece el lugar que ocupa ésta en el espacio. El astrónomo observa los diversos cuerpos celestes, estudia sus posiciones y sus movimientos. Trata de explicarlos y encontrar las causas que los originan. Analiza las formas, agrupaciones, composición y evolución de los astros y del universo como un todo, utilizando intensamente los conocimientos de todas las otras ciencias y la tecnología.
El hecho de ser una ciencia básica no impide que sus contribuciones tengan una influencia directa sobre nuestra sociedad. Su importancia es tal que ha devenido en cambios significativos en la vida cultural ,social y económica del ser humano.
Quien necesitó prontamente del conocimiento sobre el día y la noche, el año y las estaciones. Las siembras, las festividades, los cambios de los mandos seculares, impulsaron la noción de tiempo. ¿Qué mejor que los fenómenos naturales y en especial los movimientos de los astros celestes, aparentemente perpetuos e imperturbables, para atender esta necesidad? Nacen de este modo los calendarios que permiten relacionar acontecimientos distantes en el tiempo. El nacimiento de la agricultura redobló la necesidad de estos estudios.
Los primeros viajes realizados por mar y tierra que atravesaron extensas regiones, se lograron gracias a los estudios astronómicos sobre las posiciones de estrellas y planetas. Esto posibilitó el descubrimiento de nuevas tierras, el comercio entre lejanas naciones y el intercambio cultural que llevó al mundo a ser tal como lo conocemos. La Astronomía fue en parte responsable del encuentro de los Mundos que dieron lugar a los descubrimientos.
Es responsable de cosas tales como saber lo que ocurre en el extremo opuesto de la Tierra, disfrutar por tv un partido de fútbol europeo, saberlas condiciones climáticas de cada día , la posición de un taxi, sin los satélites que orbitan por millares gracias al conocimiento de las leyes de la gravitación universal , Leyes que formuló Newton, Galileo , Kepler, entre otros, sobre la base de observaciones astronómicas.


Los primeros conocimientos sobre los procesos de fisión y fusión se lograron gracias al estudio de las estrellas. Sin ellos las centrales nucleares no podrían ser una realidad. En resumen existen miles de razones y hechos concretos que permiten dar fe y ser partícipe diariamente de la Importancia de la Astronomía desde sus inicios hasta nuestros días.


DELIA DUCREAUX.


PD : Este artículo lo dedico especialmente a alguien  quien como yo ama la Física y la Astronomía desde que eramos niños. Y buscábamos en el cielo estrellado explicación para muchas cosas.El es definitivamente parte del universo..pues es un Astro...es un Sol !!

FISICA CUANTICA : CRUZANDO LA FRONTERA DE LA FISICA CLASICA .


La física cuántica, también conocida como mecánica ondulatoria, es la rama de la física que estudia el comportamiento de la materia cuando las dimensiones de ésta son tan pequeñas, en torno a 1.000 átomos, que empiezan a notarse efectos como la imposibilidad de conocer con exactitud la posición de una partícula, o su energía, o conocer simultáneamente su posición y velocidad, sin afectar a la propia partícula (Descrito según el principio de incertidumbre de Heisenberg). Surgió a lo largo de la primera mitad del siglo XX en respuesta a los problemas que no podían ser resueltos por medio de la física clásica.


Los dos Fundamentos básicos de esta teoría son:

• Las partículas intercambian energía en múltiplos enteros de una cantidad mínima posible, denominado quantum (cuanto) de energía.

• La posición de las partículas viene definida por una función que describe la probabilidad de que dicha partícula se halle en tal posición en ese instante

Según la Física Clásica, la energía radiada por un cuerpo negro, objeto que absorbe toda la energía que incide sobre él, era infinita, lo que era un desastre. Esto lo resolvió Max Plank mediante la cuantización de la energía, es decir, el cuerpo negro tomaba valores discretos de energía cuyos paquetes mínimos denominó “quantum”. Este cálculo era, además, consistente con la ley de Wien (que es un resultado de la termodinámica, y por ello independiente de los detalles del modelo empleado). Según esta última ley, todo cuerpo negro irradia con una longitud de onda (energía) que depende de su temperatura.

La dualidad onda corpúsculo, también llamada onda partícula, resolvió una aparente paradoja, demostrando que la luz y la materia pueden, a la vez, poseer propiedades de partícula y propiedades ondulatorias. Actualmente se considera que la dualidad onda - partícula es un "concepto de la mecánica cuántica según el cual no hay diferencias fundamentales entre partículas y ondas: las partículas pueden comportarse como ondas y viceversa".Esta es sin duda la idea más revolucionaria y la más importante que ha hecho la Física Quántica Clásica sobre la naturaleza de la materia ,es consecuencia de su descripción de la dualidad onda/partícula: se trata de la afirmación de que toda la materia, a un nivel subatómico, se pueden describir, de igual manera como partículas sólidas, o como ondas. La misma idea nos dice que ninguna de las dos descripciones es realmente adecuada por si misma, y que ambos aspectos de la materia, considerados como ondas o partículas, debe tenerse en cuenta cuando tratamos de comprender la naturaleza de las cosas, y lo básico es precisamente esta dualidad. El "material" cuántico es esencialmente ambas, partículas y ondas simultáneamente. En esta dualidad del ser quántico se resume en uno del los principios más fundamentales de la teoría quántica: El principio de la Complementariedad,que afirma que las dos maneras de describir o interpretar la materia, como onda o como partícula, se complementan una a la otra, y el cuadro solo surge del "reparto de paquetes". Según esta idea, cada descripción suministra una clase de información de que carece la otra. El que en un momento dado la materia elemental se presenta como una o como otra dependería de las condiciones del conjunto, que son cruciales siendo la más importante es el que haya o no alguien observando. De esta manera, según la Física Quántica, "la mayoría" de los electrones y de otras entidades subatómicas, no son ni partículas enteramente, ni enteramente ondas, sino más bien una confusa mezcla de las dos, conocida con el nombre de "Paquete de Ondas". Esta es la dualidad onda/partícula que es llamada "el misterio quántico". Mientras que podemos medir las propiedades de las ondas o las propiedades de las partículas, las exactas propiedades de la "dualidad" ha sido imposibles de medir por cualquier medio y en cualquier momento. De hecho, lo más que se ha podido hacer con el llamado "Paquete de Ondas" es hacer una "difusa lectura" de su posición y una "no menos difusa" lectura de su impulso

La Física Cuántica trajo consigo, además de nuevos resultados, cambios conceptuales muy importantes que afectan a la forma en la que habitualmente entendemos el mundo que nos rodea. No obstante, cabe señalar que estos cambios conceptuales afectan drásticamente a nuestra visión del mundo microscópico pero no tanto a la del mundo macroscópico . Obviamente muchos fenómenos macroscópicos solo pueden entenderse con base en los principios de la Física Cuántica.

La Física siempre hace el estudio de los fenómenos mediante el estudio de modelos ó representaciones parciales de la realidad. Es importante aclarar que lo se estudia no es directamente la realidad sino el "modelo" que se hace de la realidad .Usualmente, el modelo es una simplificación de la realidad que recoge las características esenciales del aspecto físico que se desea estudiar.

La física cuántica teoriza sobre la constitución íntima de la "materia real" fundamentándola en dos partículas
elementales: fermiones y bosones.



Los fermiones son las partículas que construyen la estructura de la materia, y se encuentran representados por los electrones, protones y neutrones. Son partículas que actúan con cierta independencia y autonomía. Los bosones son los vectores que transportan la esencia y la fuerza de la Naturaleza, facilitando la conjunción del Universo. Son partículas independientes que siempre interactúan entre sí, a veces sincrónicamente, pero que en ciertas condiciones pierden su individualidad.

Esta paradoja de la interdependencia e individualidad de estas partículas fue enunciada por Einstein, Podolski y Rosen. Los bosones están constituidos por los gluones, gravitones y fotones, siempre con tendencia unívoca a la reunión dispersa.

La interrelación dinámica entre Fermiones y Bosones, la fundamenta, especialmente, el fotón, que al no tener carga, es su propia antipartícula. Pares de electrones y positrones pueden ser creados espontáneamente por fotones, y este proceso se puede invertir como consecuencia de su propia aniquilación. La antipartícula del electrón es el positrón. La colisión de un fotón (γ) con un electrón (e -) genera un brusco cambio en la dirección de este. El e- absorbe al γ. Luego, lo emite cambiando de nuevo su dirección. La teoría cuántica sólo es posible expresarla en términos matemáticos y describe a la materia como una abstracción. En este sentido, la materia no ocupa ni un espacio puntual ni un tiempo determinado, se encuentra difundida y en un constante movimiento discontinuo, aleatorio e impredecible, en todo el Universo. Las partículas elementales no obedecen a leyes predeterminadas, por lo que para quien las observa en este estado inicial, resultan parecer la consecuencia de una situación caótica.

El marco de aplicación de la Teoría Cuántica se limita, casi exclusivamente, a los niveles atómico, subatómico y nuclear, donde resulta totalmente imprescindible. Pero también lo es en otros ámbitos, como la electrónica (en el diseño de transistores, microprocesadores y todo tipo de componentes electrónicos), en la física de nuevos materiales, (semiconductores y superconductores), en la física de altas energías, en el diseño de instrumentación médica (láseres, tomógrafos, etc.), en la criptografía y la computación cuánticas, y en la Cosmología teórica del Universo temprano.

Un nuevo concepto de información, basado en la naturaleza cuántica de las partículas elementales, abre posibilidades inéditas al procesamiento de datos. La nueva unidad de información es el qubit (quantum bit), que representa la superposición de 1 y 0, una cualidad imposible en el universo clásico que impulsa una criptografía indescifrable, detectando, a su vez, sin esfuerzo, la presencia de terceros que intentaran adentrarse en el sistema de transmisión. La otra gran aplicación de este nuevo tipo de información se concreta en la posibilidad de construir un ordenador cuántico, que necesita de una tecnología más avanzada que la criptografía, en la que ya se trabaja, por lo que su desarrollo se prevé para un futuro más lejano.

En la medicina, la teoría cuántica es utilizada en campos tan diversos como la cirugía láser, o la exploración radiológica. En el primero, son utilizados los sistemas láser, que aprovechan la cuantificación energética de los orbitales nucleares para producir luz monocromática, entre otras característas. En el segundo, la resonancia magnética nuclear permite visualizar la forma de de algunos tejidos al ser dirigidos los electrones de algunas sustancias corporales hacia la fuente del campo magnético en la que se ha introducido al paciente.

Otra de las aplicaciones de la mecánica cuántica es la que tiene que ver con su propiedad inherente de la probabilidad. La Teoría Cuántica nos habla de la probabilidad de que un suceso dado acontezca en un momento determinado, no de cuándo ocurrirá ciertamente el suceso en cuestión.

Cualquier suceso, por muy irreal que parezca, posee una probabilidad de que suceda, como el hecho de que al lanzar una pelota contra una pared ésta pueda traspasarla. Aunque la probabilidad de que esto sucediese sería infinitamente pequeña, podría ocurrir perfectamente.

La teleportación de los estados cuánticos (qubits) es una de las aplicaciones más innovadoras de la probabilidad cuántica, si bien parecen existir limitaciones importantes a lo que se puede conseguir en principio con dichas técnicas. En 2001, un equipo suizo logró teleportar un fotón una distancia de 2 km, posteriormente, uno austriaco logró hacerlo con un rayo de luz (conjunto de fotones) a una distancia de 600 m., y lo último ha sido teleportar un átomo, que ya posee masa, a 5 micras de distancia...

Gary Zukav, en La Danza de los Maestros, considerada la mejor obra divulgativa de la física cuántica, expresa: “La mecánica cuántica nos enseña que nosotros no estamos separados del resto del mundo, como habíamos creído. La física de las partículas nos enseña que el resto del mundo no es algo que permanece ocioso allá afuera. Por el contrario, es un brillante campo de continua creación, de transformación y, también, de aniquilamiento. Las ideas de la nueva física pueden dar lugar a que se produzcan experiencias extraordinarias cuando son captadas en su totalidad”.
El famoso físico John Wheeler escribió: “Al universo ¿lo atrae, de alguna manera, a la existencia la participación de los participantes?... El acto vital es el acto de la participación. Por tanto es el nuevo concepto incontrovertible ofrecido por la mecánica cuántica. Derrota el término observador, de la teoría clásica, que designa al hombre que está seguro detrás de un grueso cristal protector y observa lo que ocurre a su alrededor sin participar en ello. Esto es algo que no puede hacerse en la mecánica cuántica” con la física cuántica aparece también el concepto de realidad como un todo que no se puede fragmentar para ser explicado, tal como ocurre con un holograma. También, la realidad aparece como potencia para la creación, donde se dan, simultáneamente, infinitas posibilidades de formas de expresión, que se concretan según la voluntad del actor. Para la física cuántica, cualquier realidad es posible pero según sea el “ observador- participador ” sólo se concreta una ; todo es posible aunque se concrete sólo una expresión. Si se analiza esto desde el punto de vista filosófico se tendrá que el potencial cuántico depende de las interacciones entre las “partículas” del sistema y el contexto es decir que no sólo se influye en la realidad sino que, en cierta medida, es creada . Se materializan ciertas propiedades en la sociedad porque elegimos medir esas propiedades. El modo de observar el mundo que nos rodea es elegir la realidad en la cual deseamos estar.


Según la física cuántica, todas nuestras posibilidades están teniendo lugar simultáneamente, no obstante cuando enfocamos nuestra atención en la realidad, apenas una posibilidad se concibe como real para poder experimentarla como experiencia de vida pero debido a nuestras dependencias emocionales, acabamos repitiendo patrones indeseados.
De manera que la física cuántica también plantea una concepción filosófica de la realidad.




DELIA DUCREAUX

jueves, 18 de noviembre de 2010

IMPACTO DE LA FISICA NUCLEAR EN EL CAMPO DE LA MEDICINA

El objetivo de la física nuclear es el entendimiento fundamental de los núcleos, que constituyen la parte central de los átomos, donde reside casi toda la masa de la materia común. Los físicos nucleares estudian cómo se formó esta materia, cómo se mantiene unida, cómo es su estructura, cómo interacciona en colisiones y cómo se transforma en el interior de las estrellas. La persecución de estos objetivos involucra desarrollar nuevas tecnologías e instalaciones avanzadas, educar científicos jóvenes, entrenar cuadros técnicos altamente especializados y contribuir a la empresa científica y tecnológica más amplia a través de las muchas intersecciones de la física nuclear con otras disciplinas.

Las aplicaciones de la física nuclear han producido notables transformaciones en nuestro mundo moderno. Los reactores nucleares, la medicina nuclear, la aplicación de los isótopos radiactivos en la industria, las armas nucleares, etc., son solo algunas de las muchas aplicaciones de la física nuclear. Una de las áreas de investigación más activas en la actualidad es la de la fusión nuclear, con la cual se trata de lograr producir reacciones termonucleares controladas para obtener energía. Estas reacciones son del tipo de las que ocurren en el sol y las estrellas, lograr controlarlas proporcionaría a la humanidad energía prácticamente inagotable; con esto se resolvería uno de los problemas cruciales de nuestro mundo tecnificad o, que requiere de cantidades de energía cada vez mayores.
Las aplicaciones de técnicas nucleares asociadas con la salud aparecieron rápidamente después del descubrimiento de los rayos x en 1896. En la actualidad es casi imposible que un hospital moderno no tenga un departamento de radiología y un departamento de medicina nuclear o que no utilice métodos radioquímicos para diagnosticar e investigar enfermedades. Cada año se llevan a cabo más de 30 millones de procedimientos médicos usando radioisótopos. Sólo en EE.UU. se ahorran 12 millones de dólares por cirugías que no fueron practicadas al ser sustituidas por procedimientos médicos con radioisótopos.
Podemos afirmar que uno de cada tres pacientes de un hospital importante recibe los beneficios de la medicina nuclear, en la que intervienen como actores principales los radiofármacos. Cuando se quiere investigar en el cuerpo humano un proceso biológico o el funcionamiento de un órgano es necesario elegir cuidadosamente el compuesto químico radiactivo que se ha de administrar al paciente. Estos compuestos, en su mayoría orgánicos, se llaman radiofármacos. Actualmente, con fines de diagnóstico se usan más de 300 radiofármacos diferentes. Algunos se deben producir en el mismo hospital pues su vida media es muy corta, pero la mayoría se producen en centros nucleares o laboratorios nucleares específicos.
En la llamada medicina nuclear in vivo el radiofármaco se administra al paciente para investigar una función fisiológica o bioquímica del organismo. Por ejemplo, un compuesto conteniendo iodo radiactivo suministrado a un paciente permite investigar las glándulas tiroides a través de un detector especial que obtiene la imagen del órgano estudiado.
El diagnóstico por imágenes nucleares permite obtener información única sobre el funcionamiento de diversos órganos como el corazón, las tiroides, los riñones, el hígado y el cerebro, y también permite diagnosticar un amplio rango de tumores. Para diagnosticar trastornos cardíacos se inyecta cierto radiofármaco específico en el torrente sanguíneo del paciente aplicando luego un método analítico conocido corno tomografía computarizada de emisión de fotón simple. Una cámara rotatoria va midiendo e intervalos cortos la radiactividad con la ayuda de una computadora, permitiendo determinar que porción del corazón no tiene sangre.
Un nuevo método, llamado tomografía de emisión de positrones, tiene la ventaja de detectar simultáneamente imágenes en lados opuestos del paciente por lo que permite estudiar el metabolismo del músculo cardíaco con mayor precisión, Los positrones son partículas beta positiva emitidas por algunos radioisótopos como el Fluor 18.
En la llamada medicina nuclear in vitro lo que se hace es detectar y medir en un laboratorio ciertos componentes químicos de fluidos extraídos del cuerpo humano, como la sangre, y sacar conclusiones sobre enfermedades o deficiencias orgánicas. Cientos de millones de radioinmunoanálisis se realizan al año. Este método es de 10 a 100 millones de veces más sensible que otros, lo que hace posible detectar con total precisión hormonas, vitaminas, enzimas y muchas drogasen los fluidos biológicos. Esta técnica se aplica para la detección precoz de alteraciones neurológicas importantes, como es, por ejemplo, el hipotiroidismo en niños aparentemente sanos.

Algunas hormonas que pueden ser medidas con la sangre del paciente mediante el radioinmunoanálisis son: la de la función tiroidea, la de la función paratiroidea (vinculada a la descalcificación de los huesos), la de la reproducción, la de la función suprarrenal, las que intervienen en la vasoconstricción y las que son segregadas en el páncreas.

Otra aplicación muy importante del radioinmunoanálisis es en el diagnóstico y seguimiento del cáncer por la medición de las sustancias que son segregadas en la mayoría de los tumores.

Los expertos predicen que la utilización general de técnicas nucleares en medicina habrá de triplicarse en un futuro próximo a fin de hacer frente a todos los casos que prevén las proyecciones
La radioterapia permite el tratamiento de ciertas enfermedades, particularmente el cáncer, a través de la aplicación de radiaciones ionizantes. Dentro de la radioterapia, la teleterapia es el tratamiento en que la fuente de las radiaciones no está en contacto directo con el objeto del tratamiento. Las radiaciones utilizadas pueden ser de diferentes tipos y energías y tener origen en diversas fuentes. Por ejemplo, la cobaltoterapia es la forma de teleterapia que usa fuentes de cobalto 60. Otra forma de teleterapia son los modernos aceleradores que proporcionan haces de electrones, neutrones o iones pesados que permiten combatir el cáncer.
La otra forma de radioterapia es la braquiterapia que utiliza radioisótopos en forma de alambre, semilla o cápsula que se implantan directamente en el tumor, donde pueden permanecer en forma continua hasta perder su actividad o ser extraídos después de un cierto tiempo. Estos procedimientos pueden aplicarse cuando el tumor no ha sobrepasado unos pocos centímetros lo que -afortunadamente- es el caso de muchos pacientes. Un ejemplo es el tratamiento del cáncer de útero y de próstata muy comunes en muchos países en desarrollo
También las técnicas de irradiación son altamente eficaces y de bajo costo en la esterilización de artículos de uso médico (vestimenta quirúrgica, suturas, catéteres y jeringas, entre otros). Las implantaciones de injertos de tejidos biológicos, como huesos, nervios y recubrimientos de corion amniota para quemaduras también se esterilizan exitosamente con radiaciones ionizantes.
Como se ha dicho, las radiaciones ionizantes pueden producir daños importantes en los tejidos y en los órganos si no se toman las previsiones para evitar que incidan en forma descontrolada en nuestro organismo. Los departamentos de protección radiológica que deben existir en todas las instalaciones que manejan radiaciones ionizantes cuya obligación es asegurar que técnicos, profesionales, operarios, pacientes y público en general no reciban más radiaciones ionizantes que las que sean imprescindibles en total concordancia con las normas respectivas.
Garantizando de esta manera la vida de Profesionales ,Técnicos operarios ,pacientes y público en general.
Un tema especialmente importante es la determinación exacta de las dosis de radiaciones. En las aplicaciones terapéuticas su importancia puede ser de vida o muerte, por lo que es imprescindible que las dosis administradas se ajusten lo más estrechamente posible a las dosis prescriptas y que éstas, a su vez, sean las adecuadas a cada situación. De allí que la presencia de físico-médicos junto a los radioterapeutas sea obligatoria en los países avanzados.

Cada día la gran empresa del conocimiento se desarrolla más aún debido a los Avances tecnológicos. Científicos e investigadores diariamente libran la batalla en pos de nuevos descubrimientos que permitan brindar dentro del campo de la medicina una esperanza en el caso de las llamadas enfermedades Terminales. Si bien es cierto se ha avanzado mucho en materia del cáncer no lo es menos el hecho de que el mundo en general espera la tan ansiada “CURA CONTRA EL CANCER”. La física Nuclear permite a científicos y Médicos unir esfuerzos para conseguirlo.